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LETTER TO THE EDITOR

Large-N eigenvalue distribution of randomly perturbed
asymmetric matrices

B Khoruzhenko†
SFB 237 ‘Unordung und große Fluktuationen’, Institut für Mathematik, Ruhr-Universität
Bochum, 44780 Bochum, Germany

Received 14 November 1995

Abstract. The density of complex eigenvalues of random asymmetricN × N matrices is
found in the large-N limit. The matrices are of the formH0 + A whereA is a matrix ofN2

independent, identically distributed random variables with zero mean and varianceN−1v2. The
limiting densityρ(z, z∗) is bounded. The area of the support ofρ(z, z∗) cannot be less thanπv2.
In the case ofH0 commuting with its conjugate,ρ(z, z∗) is expressed in terms of the eigenvalue
distribution of the non-perturbed partH0.

Random Hermitian and real symmetric matrices have been studied extensively since the
1950s, when Wigner introduced them into theoretical physics. A lot of results concerning
these matrices and techniques for manipulating them are now known. In contrast, random
complex and real asymmetric matrices are much less studied, although they have already
proved to be useful. We mention here only two examples (but see a discussion in [1]). These
are: (i) quantum chaotic scattering and decaying processes, where complex eigenvalues of
random non-Hermitian matrices are used to analyse statistical properties of resonances [1–3],
and (ii) neural network dynamics where synaptic matrices are, in general, asymmetric
and the distribution of their eigenvalues is important for the understanding of network
dynamics [4, 5].

In this letter we consider random real asymmetric matrices of the formH = H0 + A.
A = [ajk]Nj,k=1 is a matrix ofN2 independent, identically distributed random variables such
that

〈ajk〉 = 0 〈ajkalm〉 = N−1v2δjlδkm. (1)

The angle brackets〈· · ·〉 denote an average over the random variablesajk. For simplicity we
assume thatajk are Gaussian, but our results remain valid for a wider class of distributions.
We treatA as a perturbation andH0 as the non-perturbed part and our aim is to determine
the large-N limit of the averaged density of complex eigenvalues ofH0 + A.

If A andH0 are symmetric (or Hermitian) andA obeys theGOE (GUE) statistics, then
H0 +A is known as the deformedGOE (GUE) [6]. In this ensemble eigenvalues are real and,
hence, their density is completely determined by the imaginary part of the Green function
G(E+ i0) = 〈N−1tr (E+ i0−H)−1〉. It appears that in the large-N limit the Green function
of the deformedGOE (GUE) is related to that ofH0 by the so-called Pastur equation [7]:

G(z) = G0(z − v2G(z)) . (2)
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Although this equation cannot be solved explicitly (except in a few cases) it provides useful
information about the density of eigenvalues. For instance, one can prove that the density
of eigenvalues in the deformedGOE (GUE) is bounded and decays generically as the square
root in the vicinity of the spectrum boundaries [8].

Eigenvalues of asymmetric matrices are complex and their average densityρ(z, z∗) is
determined by the electrostatic potential

8(κ, z, z∗) = −N−1〈log det[(zI − H)∗(zI − H) + κ2I ]〉
by means of Poisson’s equationρ(z, z∗) = −(1/π)∂28(κ, z, z∗)/∂z∂z∗∣∣

κ=0 [1, 9]. I is the
identity matrix. A positive infinitesimalκ is introduced in order to regularize the potential.
Providedκ = 0, 8 as a function of complexz has a singularity wheneverz equals one of
the eigenvalues ofH .

Anticipating an important role of positive semi-definite matricesH = (zI −H)∗(zI −H)

in studying complex eigenvalues ofH , we introduce the following Green function:

R(κ) = 〈N−1 tr(H + κ2I )−1〉 (3)

corresponding toH. R(κ) as a function ofκ is analytic in the right half of the complex plane
and obviously determines the density of eigenvalues ofH. We show that in the large-N

limit the Green functions ofH andH0 = (zI − H0)
∗(zI − H0) are related by equation (10)

which can be thought of as a generalization of Pastur’s result to the case of positive semi-
definite random matrices. In passing, we find derivatives of the electrostatic potential. This
allows us to derive an expression for the average density of complex eigenvalues ofH ,
ρ(z, z∗), and for the domain of their distribution. The respective expressions (12)–(14) are
given in terms ofH0. Actually, they set up the only restriction toH0: quantities entering
(12)–(14) must be well defined in the large-N limit. We do not specifyH0 further. It can
be real or complex and either deterministic or random. In the latter case it is assumed that
H0 is statistically independent ofA and it is understood that the average over realizations
of H0 has been taken.

At this point it is worth mentioning that in the specific case ofH0 commuting with
its conjugateH0

∗ (i.e. H0 can be symmetric, skew-symmetric, Hermitian, skew-Hermitian,
etc) ρ(z, z∗) can beexplicitly expressed in terms of the density of eigenvalues ofH0 (see
equations (15)–(17)). This should be compared with the case of deformedGOE (GUE) where
only relation (2) between Green functions is known.

Our last remark concerns matrices studied in [1, 3]. They are of the form iV V > + B,
whereV is anN ×M matrix of NM independent Gaussian variables andB obeys theGOE

statistics. These random matrices differ from those considered here in thatB is symmetric
while A is asymmetric. The eigenvalue distribution ofV V > is known [10] and it seems
interesting to recover the results of [1, 3], which were obtained by means of the replica
trick [1] and supersymmetry calculations [3], in the framework of our approach. But this
problem goes beyond the aim of the present letter.

Introducing the notationG(κ) for the inverse ofH + κ2I we rewrite the following
obvious matrix identityI = 〈G(κ)(H + κ2I )−1〉 as

κ2〈G(κ)〉 = I − (zI − H0)
∗〈(zI − H)G(κ)〉 + 〈A∗(zI − H)G(κ)〉 . (4)

zI − H0 is statistically independent ofG(κ) but A, which enters the(zI − H) term in the
right-hand side of (4), is not. In order to decouple〈AG(κ)〉 and〈A∗AG(κ)〉 we first notice
that each of the entriesGpq of the matrixG(κ) is a function of the Gaussian variablealm.
Therefore

〈almGpq〉 = 〈a2
lm〉〈∂Gpq/∂alm〉 = N−1v2 〈∂Gpq/∂alm〉 . (5)



Letter to the Editor L167

This is the only place where a Gaussian distribution ofalm is used. In the non-Gaussian
case it can be shown that (5) holds up to the 1/N2 order if alm = N−1/2αlm and the random
variablesαlm possess several first moments. Straightforward application of (5) and the
following rule for differentiating matrix elements ofG(κ) with respect to those ofA

∂Gpq

∂alm

= [G(zI − H)∗]pl Gmq + Gpm [(zI − H)G]lq (6)

gives

〈(zI − H)G(κ)〉 = (zI − H0)〈G(κ)〉 − v2〈(zI − H)G(κ)N−1 tr G(κ)〉 + O(1/N) .

One can readily check (6) making use of∂Gpq/∂Hkm = −Gpk Gmq and the chain rule. The
normalized trace ofG(κ) is a self-averaging extensive quantity [8]. That is, it becomes non-
random in the large-N limit: N−1 tr G(κ) = R(κ) + O(1/N), whereR(κ) = 〈N−1 tr G(κ)〉.
Therefore we conclude that

〈(zI − H)G(κ)〉 = (zI − H0)〈G(κ)〉[1 + v2R(κ)]−1 + O(1/N) . (7)

Similar reasoning leads to

〈A∗(zI − H)G(κ)〉 = −v2κ2R(κ)〈G(κ)〉 + O(1/N) . (8)

Collecting (4), (7) and (8) we find that in the leading order

〈G(κ)〉 = 1 + v2R(κ)

(zI − H0)∗(zI − H0) + κ2[1 + v2R(κ)]2I
. (9)

Introducing the notationG0(κ) for the inverse ofH0 + κ2I one can write (9) in the form
〈G(κ)〉 = (1 + v2R(κ))G0(κ[1 + v2R(κ)]). R(κ) is to be determined from the self-
consistency equation

R(κ) = [1 + v2R(κ)]R0(κ[1 + v2R(κ)]) (10)

whereR0(κ) = N−1 tr G0(κ).
Since−∂8/∂z∗ = 〈N−1 tr(zI − H)G(κ)〉 one can use (7) and (9) to calculateρ(z, z∗).

Indeed,

−∂8(κ, z, z∗)
∂z∗ = N−1 tr(zI − H0)G0(κ[1 + v2R(κ)]) + O(1/N) .

Simple analysis of (10) shows that in the leading order∂8(κ, z, z∗)/∂z∗∣∣
κ=0 is given by

−∂8(κ, z, z∗)
∂z∗

∣∣∣
κ=0

= N−1 tr(zI − H0)G0(γ (z, z∗)) (11)

whereγ (z, z∗) = limκ→0+ κ[1 + v2R(κ)] is the solution ofR0(γ ) = v−2 if z lies inside the
domainD determined by the inequality

R0(0) = N−1 tr[(zI − H0)
∗(zI − H)]−1 > v−2 (12)

andγ (z, z∗) = 0 otherwise. Since in the latter case∂8/∂z∗∣∣
κ=0 does not depend onz we

conclude immediately thatρ(z, z∗) = 0 outsideD. On the other hand, differentiating (11)
with respect toz one finds that insideD

ρ(z, z∗) = (πv2)−1 − π−1I (z, z∗) (13)

whereI (z, z∗) is the large-N limit of

N−1 tr(zI − H0)G0(γ (z, z∗))(zI − H0)
∗G0(γ (z, z∗))

− ∣∣N−1 tr(zI − H0)G2
0(γ (z, z∗))

∣∣2 [
N−1 tr G2

0(γ (z, z∗))
]−1

. (14)
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For any two matricesP and Q | tr PQ∗|2 6 tr PP ∗ tr QQ∗. ThereforeI (z, z∗) > 0 and
ρ(z, z∗) is bounded by(πv2)−1. This fact, which is interesting in its own right, also has an
important consequence: the area ofD, the support ofρ(z, z∗), is not less than the area of
a disc with radiusv.

In order to illustrate the formulae derived we consider a few examples. IfH0 = 0, then
the equationR0(0) = v−2, which determines the boundary ofD, takes the form|z|2 = v2

andI (z, z∗) obviously vanishes. Thus, we recover the circular distribution [11–13]:ρ(z, z∗)
equals(πv2)−1 inside the disc|z| 6 v and zero outside.

In our next exampleH0 is the Jordan blockJ = [h0δj−1,k]Nj,k=1, h0 > 0. J has only
one eigenvaluez = 0 which is defective and highly sensitive to perturbations. On replacing
zero in the lower left-hand corner ofJ by small positiveε, one getsN distinct eigenvalues
h0(ε/h0)

1/N exp(2π ik/N). For fixed N the perturbed eigenvalues approach zero as the
parameterε/h0 vanishes, but the rate of convergence is extremely slow ifN is large.
For instance, ifN = 50 one needsε/h0 ∝ 10−50 in order to confine the eigenvalues to
the disc|z|/h0 6 0.1. Therefore, if not exponentially small, perturbation splits the zero
eigenvalue ofJ into the circle |z| = h0. As can be seen from (12) this phenomenon
manifests itself in the large-N limit. Indeed, in the case ofH0 = J , equation (12) reduces
to ||z|2 − h0

2| 6 v2. Therefore ifv < h0 the eigenvalues ofJ + A are distributed in the
annulus 1− v2/h0

2 6
∣∣z/h0

∣∣2 6 1 + v2/h0
2 which degenerates into a circle asv vanishes.

Whenv > h0 the eigenvalues are distributed in the disc
∣∣z/h0

∣∣2 6 1 + v2/h0
2. In figure 1

we present the results of numerical diagonalization of random matricesJ + A. As can be
seen, the correspondence between the numerical results and our analytical predictions (for
N → ∞) is quite good.

If H0 commutes with its conjugateH0
∗, our formulae (12)–(14) become simpler. Let

us assume that the eigenvalues ofH0 are real. Then the boundary ofD is determined by

∫
n(λ) dλ

|z − λ|2 = 1

v2
(15)

wheren(λ) is the density of eigenvalues ofH0. ρ(z, z∗) is given by the same expression

Figure 1. Distribution of numerically computed eigenvalues of the random matricesJ + A in
the complex planez/h0. In each of the plotsN = 50 and the number of samples is 40. (a)
v2/h2

0 = 1/2, (b) v2/h2
0 = 1. The full circles show the boundary of the support ofρ(z, z∗) in

the large-N limit.
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(13) as before but nowI (z, z∗) is∫ |z − λ|2n(λ) dλ

[|z − λ|2 + γ 2(z, z∗)]2
−

∣∣∣∣∫ (z − λ)n(λ) dλ

[|z − λ|2 + γ 2(z, z∗)]2

∣∣∣∣2 [∫
n(λ) dλ

[|z − λ|2 + γ 2(z, z∗)]2

]−1

(16)

andγ (z, z∗) has to be found from∫
n(λ) dλ

|z − λ|2 + γ 2
= 1

v2
. (17)
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